#P4247. [SCOI2014] 舌尖上的方伯伯

[SCOI2014] 舌尖上的方伯伯

题目描述

方伯伯为了吃到最传统最纯净的美食,决定亲自开垦一片菜园。现有一片空地,方伯伯已经规划 nn 个地点准备种上蔬菜。

最新鲜的蔬菜需有最甘甜井水的灌溉,因此方伯伯将要打出两口井,分别记为井 A、井 B。现在问题来了,在何处打井?每颗蔬菜分别由哪口井来灌溉?方伯伯不善于计算,于是提出以下几个原则,再根据这些原则找方案。原则如下:

  1. 井必须打在它负责灌溉的蔬菜的正中心,即设它的坐标为 (X,Y)(X,Y)X,YX,Y 分别为它负责灌溉的所有蔬菜的横纵坐标之和的平均值。
  2. 所有蔬菜都需要被灌溉。
  3. 两口井都必须要灌溉至少一颗蔬菜。
  4. 到 A 井更近的蔬菜,必须由 A 井灌溉,到 B 井更近的蔬菜,必须由 B 井灌溉。距离相等相等时则可任意一口井灌溉。

当然两口井不能打到同一个位置,多株蔬菜当然也不会种在同一个位置。

方伯伯把他的开垦原则告诉了你,请你告诉他有多少种满足这些原则方案。我们把灌溉 11 号蔬菜的井记为 A 号井,那么,只要 A 灌溉的蔬菜的集合不同,就是一种不同的方案。

输入格式

输入 11 行包含 11 个整数 nn,代表方师傅的蔬菜的数目接下来 nn 行,每行包含 22 个整数,xix_iyiy_i,代表第 ii 棵蔬菜的坐标。

输出格式

输出包含 11 个整数,代表方师傅可行的方案数

3
3 4
1 1
5 1
3

提示

1n601\le n\le 600xi,yi600\le x_i,y_i\le 60