#P4844. Drazil and Factorial
Drazil and Factorial
Drazil and Factorial
题面翻译
题目描述 Drazil正在和Varda一起玩数学游戏。
让我们定义正整数x作为其数字的阶乘的乘积。例如,F(135)=1!*3!*5!=720。
首先,他们选择一个十进制数a,a是一个由n个数字组成的数。此数字可能以前导零开头。然后他们要找到最大正数x,x满足以下两个条件:
1.x不包含任何数字0和数字1。
2.F(x)=F(a)。
帮朋友找到这样的号码。
输入输出格式 输入格式: 第一行包含一个整数n(1<=n<=15)。
第二行包含一个长度n的数字a。a至少有一位数字。数字a可能包含前导零。
输出格式: 输出满足上述条件的最大可能整数。在这个数字十进制表示中应该没有零和1。
题目描述
Drazil is playing a math game with Varda.
Let's define for positive integer as a product of factorials of its digits. For example, .
First, they choose a decimal number consisting of digits that contains at least one digit larger than . This number may possibly start with leading zeroes. Then they should find maximum positive number satisfying following two conditions:
1. doesn't contain neither digit nor digit .
2. = .
Help friends find such number.
输入格式
The first line contains an integer ( ) — the number of digits in .
The second line contains digits of . There is at least one digit in that is larger than . Number may possibly contain leading zeroes.
输出格式
Output a maximum possible integer satisfying the conditions above. There should be no zeroes and ones in this number decimal representation.
样例 #1
样例输入 #1
4
1234
样例输出 #1
33222
样例 #2
样例输入 #2
3
555
样例输出 #2
555
提示
In the first case,